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Short Papers .—

Electromagnetic Analysis of Spherical Dielectic

Shielded Resonators

ANNE JULIEN AND PIERRE GUILLON

Abstract — We present in this paper, the electromagnetic parameters of

free and shielded dielectric sphericaf resonators for their utilization in the

millimeter-wave frequency band.

I. INTRODUCTION

For many years, dielectric resonators have been of considerable

interest in microwave techniques. They are used in a number of

different applications at high frequencies (filters, oscillators, etc.)

We have studied dielectric resonator behavior for millimeter-

wave frequencies (through 90 GHz). In this case, the dimensions

of dielectric samples are very small, so, we will use spherical
dielectric resonators that are easier to produce than the cylin-
drical ones. This type of shielded dielectric resonator could be
inserted into microstrip, fin lines or waveguide structures to
realize passive circuits (bandstop and bandpass filters) which in
turn could be coupled with active circuits to stabilize the resonant
frequency of au oscillator.

Several publications about dielectric spheres have been pre-
sented [1]–[7].

The present work analyzes the electromagnetic parameters of
free and shielded dielectric spheres. In each case, the frequencies
and the Q factor are calculated.

II. FREEDIELECTRICSPHERE

A. Fields Expressions

Let us consider a dielectric spherical sample (permittivity c,

and radius a) placed in an infinite, linear, homogeneous, and

isotropic medium (Fig 1). The electromagnetic fields existing in

the system satisfy Maxwell’s equations. It’s possible to class the

waves as transverse electric modes (TE) and transverse magnetic

modes (TM).

After expansion and simplification of Maxwell’s equations in a

spherical coordinates system (r, 0, ~) we obtain the spherical

wave equation
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where ~ is a function of r, 0, and +.
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Fig. 1. Spherical dielectric resonator.

The solution is found by applying the separating variable

method

$=~(r). g(o). h(o).. (2)

According to r < a or r 2a, we obtain the fields’ exprmsions

given in the following form:

TE~~, mode

where n corresponds to the variation of r, m corresponds to the

variation of +, 1 defines the lth root of the characteristic equa-

tion (5a).

Forr<a

E,=O

– ‘opomAJ~+1,2( kr)P#(cos6) ‘$~s m+
“=JGsin6

We have chosen the solution J~+-l (h) (the first Bessel fwnction

r
of n + ~ order in kr with k = u c, /c) taking into accourst that

the energy inside the sphere must be firsite. P~m(COS0 ) is the first

kind associated Legendre function of orders n, m, in cos f?. .4 is a

constant.
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Forr>a

E,=O

.~(cosd) ‘~~sm~. (4)

We have chosen the solution H@)~+ 1,2( k. r), the Hankel function

of the second kind of the order n + ~ in kO r, with ~0 = @/c

having zero energy at infinity

TM.~, Mode.

For TM,IW,, modes, the fields’ expressions are of the same type,

but we may introduce the characteristic impedance that depends

on the permittivity c ( = co(, ) of the media that we consider.

B. Characteristic Equation

To establish the resonant condition of the inhomogeneous

dielectric system, we write the continuity condition in r = a. So

we obtain a characteristic equation available, respectively, for

TE,, ~,, and TM,, .,, modes

(5a)

J,-1/2(~a) r fwl/2(koa) . ~5b)
— :+ .=+ GH(2)

.t7+1/2(~a) koa
~+,,, (koa)

To solve these equations, we introduce a complex pulsation
~ = ~~ – ju~~, which is the pulsation of free oSCikitiOIM, t~ng

into account the damp outside the dielectric resonator. The real

value u’, introduces the resonant frequency of the free dielectric

sphere: ~. = CO’\2n. The imaginary pwt ~“, corresponds to the

radiation losses. The energy in the dielectric sphere can be

written as follows:

Em(t) =@m(Q)e-20”r.

Let ~P be the radiated energy

wp=;(m.(t)) =2@’’w.(t)

so ti” = @p /2%., .
With this assumption, we can define the radiation quality

factor Q, of the free spherical dielectric resonator

Q,= ~’~~/PP = u’/2wr’.

We substitute into (5a) and (5b), respectively, ka and koa by

TABLE I
4

mDE RflDIUSa(mn) REWWT FRfw f@ (8hz)

1.56 15.66

TE101
0,72 33.9

i 1.56 33.92

‘Elm
8,72 73,5
1,56 22.5

Tfl10}
0.72 48.8
1.56 35.2

To? .7
76,3

TABLE II

rioDE fdUllUS a(m) RES#%iT mw fe (fhz)

1.56 29.7

‘Elal
0.72 63,1

1.% 59.8

TE162 .7
134

their expressions in (6):

ka= aa\c= (w’– jo’’)a/c= X– jY

koa = kal~ = X’ – jY’4

with

x’=x/fi, Y=Y/& (6)

and we use a computer to find the values of X, X’, Y, and Y’

satisfying (5a) and (5b).

C. Results of Computation

An example of the results that we can obtain is presented in

Table I for different modes and dimensions of dielectric samples

(of permittivity c, = 36).

A new material having been produced recently by NTK [8], for

which the product (~, /tg8) = 350000 and the permittivity 6, =

9.7. Some results are given (Table II).

Some radiated Q also have been computed. For example, we

found

for TEIOI mode with <r = 36 Qr = 31.4

with c, = 9.7 Q,= 8

for TE102 mode with c, = 36 Q,= 27.3

with c, = 9.7 Q,= 9.

II. SHIELDED DIELECTRIC SPr-mrw

A. Fields Expressions

We now suppose that we have the system consisting of: a

dielectric sphere (permittivity c, and radius a), shielded by a

spherical metallic cavity of radius b (Fig 2). Such a structure

approximates the spherical dielectric resonator inserted into a

waveguide if the dimensions of the metallic sphere are near to the

inside dimensions of the waveguide.
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Fig. 2. Shielded dielectric sphere.

Applying Maxwel~s equations, we obtain the same wave equa-
tion of that used for free spheres. So, for r < a, we preserve the

same fields’ expressions. For a < r < b, we choose a solution that

is a linear combination of J.+ 1,2 and Y.+ ~,z (the second kind of

Bessel function of the order n + > in k. r with k.= Q/c) and

obtain

TE~~l mode

fora<r<b

E,=O

“=dis:om(BJ.+l/,(k~r)+ CK+~/,(k.r))

a(~~.+,,,(k.~)+c~+,,,(k.r))~‘“”w

“’”*:
.(fi(BJ.+,,,(k.r)+cY,+,,2(k.r)))~

m d
“b= .

r sin 8A dr

fora<r<b.

As we did previously, we permute the E and H fields without

forgetting @.
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Fig. 3. Resonarrt frequency variations of the shielded dielectric rewmator

(SDR) for TEIO, mode.

B. Characteristic Equations

We satisfy the continuity conditions on the dielectric interfaces

at r = a and the boundary conditions on the metallic surface

situated at r = b

1) Continuity at r = a of the tangential components of E and

H fields.

2) Tangential electric field must be zero at r = b.

After some manipulations, we obtain, respectively, for TE~~,

and TM,, ~, modes

,,+1/2(k.b){ J.+1/2(ka)Ji+l/2(k.a)Y

-&J.+,/2(k.a)J;+ ~/,(ka)}

= ,,+,/2(~.b){ J.+,z~(ka)Y+,/2(k.a)J

-@%+,/, (k.a)JL,,,(ka)}

(—60
,,+,,,(ka){J.+,,, (k.a)(K+l/,(k.b)—J

2a

+2bkoK+,,,(k.b) )- Z+,/, (k.a)

.(~l+,/2(kob)+2 bkoJ;+,/2(kob))}

= { kco~r+1,2(koa)J~+,,, (ka)

– kocJ. +1/2( ka) %+1/2 (koa)}

{K+,,,(kob)-Jn+, /,(kob)

+2bko(~+,/,(kob) -J;+l/,(kob))} (8)

i~+ li, ~d V+ 112 are the first derived functions (\kor or \kr)

of -L+l/2 ~d Y~+l/2.
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Fig. 4. Resonant frequency variations of the shielded dielectric resonator

(SDR) for TE102 mode.
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Fig. 5. Resonant frequency variations of the shielded dielectric resonator

(SDR) for TM1O1 mode.
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We solve these equations numerically using a HP9000 com-

puter. The variations of the frequencies as a function of the

radius b for n = 1 and m = O has been drawn in Figs. 3–7.

Let us consider the results for a = 0.72 mm. For TEIOI mode,

we note that the frequency’s plateau (1 < b < 6) corresponds to

the resonant frequency of the free sphere, then the frequency

variation (b > 6) follows the variation of the metallic cavity’s

frequency of the corresponding mode, in which the dielectric

resonator is only a small perturbation of this metallic cavity.

This type of variation also can be observed for TMIOl mode

(1< b <2.5 & b > 2.5). For modes that have large i variation

(for exmple TE102, TE103 0. o), we see several plateaus that cor-
respond to TEl~, i.e.,

the first plateau to resonant frequency of the free

(1< b <1.8) sphere on the TElw mode

the second plateau to resonant frequency of the free

(2.5 < b < .35) sphere on the TE103 mode

the third plateau to resonant frequency of the free

(5< b<7) sphere on the TE102 mode.

Each plateau is followed by the frequency decrease like TEIOl,

TE 102> ‘T&03, respectively, modes of the empty cavities corre-
sponding. We can remark that the first plateau (before the

convergence to the variation of the TEIOI of the empty cavity)

reduces as the order of the mode increases:

for TElol there is the plateau for 1< b <6

for TE102 there is the plateau for 1< b <3

for TE103 there is the plateau for 1< b <2

for TEIW there is the plateau for 1< b <1.8.

Finally, a mode chart of the first TEIO1, TM1O1, TE201, TMzo1

modes of a shielded dielectric resonator is given.

C. Energy, Losses, and Quality Factor

Ener~: The energy ~ stored in the dielectric shielded sphere

is defined as:

so ~ is the sum of the energy WI, stored inside the dielectric

sphere (for r < a) and the energy ~z, stored between the dielec-

tric resonator and the metallic surface (a_< r < b).

Following the mode that we study, WI and ~2 can be ex-

pressed by using either E- or H-field components. For TEIOI

mode we use E, and for TMIOI mode we use H. In

the first case, for example, WI and ~z satisfy (10) and (11),

respectively

We have calculated WI and F2 for TEIOI and TMIOI modes (i.e.,

n=landm=O)

TEIOI Mode

r2x

Jn+l/2(x) = ~jti(x)

(12)

Applying the relations (12) between the Bessel functions of
fractional order J,, ~,z and Y.. 1,2 and the spherical Bessel
functions j,, y,, we obtain (13), (14)

4
El = ;A2coc,(2n~o)2p~a3

(jf(ka)-j0(ka)j2(~a)) (13)

ti2 = ;#coP;(2mfo)2

(B;Z1 + CfI, + B1C113) (14)

with

B1 =
–jl(ka)Yl(kOb)

jl(kOb)Yl(kOa) –jl(kOa)yl(kOb) ;

c,=
A(ku).A(kob)

jl(~o~)~l(~o~)–~l(~o~)~l(~ob)
11=r3(j~(kor) -jo(kor)j2(kor) )]~;

12=r3(y~(kor) -yo(kor)y,(kor))]~

13=r3(2j1( kor)yl(kor) –jo(kor)y2(kor)

–jZ(kOr)YO(kO~))]~ (15)

TMIOI mode

W{=+AZ po(27r~o)2c&a3

-(j~(ka)-jo(ka) j’(ka)) (16)

W<= $42jLo(27jo)2C:( B~I1 + C:12 + B2C213) (17)

B* = – %~l(~a)(Yl(~ob) + b~oYi(kob)) ;

D

~z = ~,jl(ka)(~l(kob) + bkojl(kob))

D

D =yl(koa)(jl(kob)+ bkoj[(kob))

- jl(k~a)(y~(kob) + bkoyi(kob)) (18)

j; ad Y; me tie first derived~unctions of ~. and Y..
Losses: The power losses P of the system are defined as:

~ = ~~, + ~d where >~ are the metallic losses in r = b

~m,= :R, j~metdtic,wface $%2*),=, ds (19)

and ~d the dielectric losses

1
Fd = y Od/// ~.@dV (20)

udielectric sphere volume

with

fi the surface resistivity =1/08

metallic conductivity

: skin depth = ~w

U4 is dielectric conductivity = (2 n~o ) coc, tg8

the material).

(fgtl loss tangent of
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As for the energy, we have calculated ~ for TEIOI and TMIOI

modes

TEIOI mode

T

2~foPo ~2k2
FM =:A2 —

20 0

.( Blj{(kob) + C,y;(kob))’

= 2?rfotg8w1

TMIO, Mode

@2j1(kob)+C 2y,(kob))2

Fd = 2Tfotg8w{.

Quality Factor Q:

energy stored F

Q = 2~fo losses = 27rfo~

i.e.,

This Q relation can be written as follows

1 F Fd 11
.=- +_ =—+—
Q 2rfoW 2~foW Q. Q.

(21)

(22)

(23)

(24)

(25)

(26)

(27)

where Q~ is called the metallic quality factor and Qd the

dielectric one. For the TEIOI and TMIOI modes, this Q factor

satisfies

TEIOI mode

27rfo(i71+w2)
Q._

Pm + 2Tfo tg13WI “

TM,., mode

As previously mentioned, we have

2!7fo(w{ + w;)
Q._

Pm + 27rfotg8F/ “

(28)

(29)

III. RESULTS

These Q factors have been computed and the variations as a

function of radius b have been drawn in Figs. 8-11.

For TElol and TMIOI, respectively, the Q plateau (correspond-

ing to the frequencies’ plateau) corresponds to the inverse of the

loss tangent of the dielectric material. This plateau for TE1O1

(1< b <6) corresponds to the value Hd = O (Fig 9). Then the

increase of Q values (corresponding to the decrease of the

frequencies) converges to the Q variation of the metallic cavity.

This Q variation is of the same type for the TMIOI mode.

t Ii

“’l2ea801
:l:~z:-:.......

15 28 25 38
t - 8.72 mm b(m)

,,$: ~6/ ,aaa’

Fig. 8. Quality factor variations of the SDR for TEIOI mode.
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For modes having large i variation, we note several Q plateaus.

For TE102 for example:

The first Q plateau (1< b < 3) corresponds to the inverse of

the loss tnngent of the dielectric material on TE102 mode (i.e.,

like for frequencies).

The variation following (i.e., increase and decrease) corre-

sponds to the variation of the Q of the metallic cavity on
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Fig. 11. Quality factor variations of the SDR for TM1O1 mode.

the TEIOI mode (effectively, here, the resonant frequency of the

shielded dielectric resonator on the TE102 mode follows the

variation of the resonant frequency of metallic cavity on the

TEIO1 mode).

The second Q plateau (7< b < 10) corresponds to the inverse

of the loss tangent of the dielectric material on the TEIOI mode.

The last increase converges to the Q values of the metallic

cavity on the TEloz mode (the frequency follows here, the one of

metallic cavity on T13101 mode).
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crostrfp transmission lines. Conductor strips are assumed to be embledded

iu a multilayered isotropic end/or aniaotropic medium. This method pro-

vides accurate expressions for computing upper and lower bounds for the

tnre values of mode capacitances, The effects of side wall-shielding and

anisotropy of the materiaf are investigated. Some particular mtrftilayered

structures are analyzed, which could be applied to the design of directional

couplers and filters.

I. INTRODUCTION

As is well known, coupled lines are extensively used as building

blocks for a great variety of microwave circuit components for

communication systems [1]-[3]. The electrical response of cou-

pled line systems has been studied using the ABCD or impedance

matrix formulation [4], [5], and these techniques require prior

knowledge of the mode characteristic impedances and phase

velocities of the structure to be used. When weak coupling must

be achieved, edge-coupled strips on a dielectric substrate are

widely used. This configuration yields small deviations from

equal mode-phase velocities, but these can be suppressed by

using adequate techniques [6], [7]. However, if a strong coupling

is needed, broadside-coupled configurations are more adequate.

If the strips are embedded in an inhomogeneous artd/or aniso-

tropic dielectric medium, deviations from equality of phase veloc-

ities appear. In fact, large phase velocity ratios can be achieved

with broadside-coupled structures, which is useful for the design

of single section components with complex electrical responses

[8]. Nevertheless, if equal mode-phase velocities are required,

matching can be achieved if we use multidielectric iso/aniso-

tropic configurations.

Broadside-coupled and broadside edge-coupled structures have

been studied by several authors using different methods [8]--[15].

The purpose of this paper is to present a unified formulation to

analyze these configurations, in a multilayered iso/anisotropic

medium. The multiple boundaries problem is treated by using a

variational method in the spectral domain. The applicaticm of

this method provides two numerically efficient rdgonthms that

yield upper and lower bounds for the exact values of the mode

capacitances for this type of transmission lines. We have applied

the method to several particular cases, and also reported the

influence of the side walls and anisotropy.

II. ANALYSIS

The cross sections of the structures that are the object of this

study are represented in Fig. 1. For both configurations we will

assume perfect conductors and lossless dielectric layers. We will

also assume strips with valueless thickness. The electrical permit-

tivity of the i-th dielectric layer is given by the following diagonal

tensor:

[1c; o
:, = co

0<;’
i=l,. ... N. (1)

Although the inbomogeneous nature of the dielectric medium

precludes pure TEM-mode propagation, one can use the quasi-

TEM approximation as long as the cross-sectional dimensions are

much smaller than the wavelength. In this case, structures in Fig.

l(a) and (b) can support two and four orthogonal modes of

propagation, respectively. By determining each mode cal~aci-

tance, we can in turn discover the electrical behavior of the

coupled transmission line. To evaluate the mode capacitances,

one can simplify the problem by taking into account the symme-

try of the structure. In fact, we only need analyze one quadrant of

the cross section shown in Fig. l(a) or (b) (the upper right
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