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Short Papers

Electromagnetic Analysis of Spherical Dielectric
Shielded Resonators

ANNE JULIEN anp PIERRE GUILLON

Abstract —We present in this paper, the electromagnetic parameters of
free and shielded dielectric spherical resonators for their utilization in the
millimeter-wave frequency band.

I. INTRODUCTION

For many years, dielectric resonators have been of considerable
interest in microwave techniques. They are used in a number of
different applications at high frequencies (filters, oscillators, etc.)

We have studied dielectric resonator behavior for millimeter-
wave frequencies (through 90 GHz). In this case, the dimensions
of dielectric samples are very small, so, we will use spherical
dielectric resonators that are easier to produce than the cylin-
drical ones. This type of shielded dielectric resonator could be
inserted into microstrip, fin lines or waveguide structures to
realize passive circuits (bandstop and bandpass filters) which in
turn could be coupled with active circuits to stabilize the resonant
frequency of an oscillator.

Several publications about diclectric spheres have been pre-
sented [1]-]7].

The present work analyzes the electromagnetic parameters of
free and shielded dielectric spheres. In each case, the frequencies
and the Q factor are calculated.

II. FREE DIELECTRIC SPHERE

A. Fields Expressions

Let us consider a dielectric spherical sample (permittivity e,
and radius a) placed in an infinite, linear, homogeneous, and
isotropic medium (Fig 1). The electromagnetic fields existing in
the system satisfy Maxwell’s equations. It’s possible to class the
waves as transverse electric modes (TE) and transverse magnetic
modes (TM).

After expansion and simplification of Maxwell’s equations in a
spherical coordinates system (r,#,¢) we obtain the spherical
wave equation

Ay 29y 1 3. 8y
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where y is a function of », 0, and ¢.
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Fig. 1. Spherical dielectric resonator.

The solution is found by applying the separating variable
method

¥=1(r)-g(8)-1(9). (2)
According to r<a or r>a, we obtain the fields’ expressions
given in the following form:
TE,,,; mode

where n corresponds to the variation of », m corresponds to the
variation of ¢, / defines the /th root of the characteristic equa-
tion (5a).

For r<a
E=0
— jop
Eﬁ»/l?sin?)'"”"+1/2(k’)P"'(C°S") Sin gy
j‘*’ﬂo "
Ey=—— Jkr n+1/2(k") (P (Cose))
_n(n+l) 4
r= 7372 1/% n+1/2(kr)P'"(Coso)COS
4 4 m cos
H0=T§‘(‘/—Jn+1/2(k”)) (P (cos)) o
mA

H¢ Slnox/—r dr(\/—-’nﬂ/z(kr)) P’"(COso) —sm m¢ (3)

We have chosen the solution J, ,; ,, (kr) (the first Bessel function
of n+73 order in kr with k = w/e, /c) taking into account that
the energy inside the sphere must be finite. P (cos #) is the first
kind associated Legendre function of orders n, m, in cos 8. 4 is a
constant.
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Forr>a
E =0
E=T-;iﬁf‘;-é mBHY, ,(kor)
-P"(cos@) ~ z‘onsmqb
£, - "/E"_ BH2, (ko) oo (P (08 0)) 55 m
r_L;;l_)%H"“/Z(kor) (Coso)sm

‘/— dr (‘/—I{n+1/2(k0r))

'(P”’(cosﬂ));ons
mB
H¢ rSlna‘/_ dr (\/_Hn+1/2(k0r))
-P"(cos@) ~ (S:]ons me 4

We have chosen the solution H® | 2 (kor), the Hankel function
of the second kind of the order n+3% in kyr, with ky=w/c
having zero energy at infinity

™, Mode.

nml

For TM,, ,,, modes, the fields’ expressions are of the same type,
but we may introduce the characteristic impedance that depends
on the permittivity e( = €,¢,) of the media that we consider.

B. Characteristic Equation

To establish the resonant condition of the inhomogeneous
dielectric system, we write the continuity condition in 7= a. So
we obtain a characteristic equation available, respectively, for
TE,,,, and T™M,,,,, modes

Jn~1/2(ka) 1 H(2)1/2(k0a) (5a)
Jn+1/2(ka) \/— +1/2(koa)
— koa
l + Jn*l/Z(ka) - n\/e—r +\/E7 12)1/2( ) (Sb)
ka  J,.i,(ka) koa H2)1 2 (koa)

To solve these equations, we introduce a complex pulsation
w = — jw’, which is the pulsation of free oscillations, taking
into account the damp outside the dielectric resonator. The real
value «’, introduces the resonant frequency of the free dielectric
sphere: f, = «//2m. The imaginary part «', corresponds to the
radiation losses. The energy in the dielectric sphere can be
written as follows:

W, (1) =W, (0)e 2"
Let W, be the radiated energy

W, = — (1) = 2T, (1)

SO w’= W /2W,,.
With th1s assumption, we can define the radiation quality
factor Q, of the free spherical dielectric resonator

Q, =W, /W,=u/2e".
We substitute into (5a) and (5b), respectively, ka and kya by
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TABLE1
POIE__ ]| RADIUS a(am) | RESONANT FREQUENCY fo (Ghz)
1.5 15.66
3T
0.7 3.9
1.5 3.9
T |
6,72 73.5
1.5 2.5
LT
0.7 8.8
1.5 3%5.2
LT
9.7 7.3
TABLE 11
MODE_ | RADIUS aCan) | RESONANT FRE fo (Bho)
1.5 2.7
T
1a1
8.72 63.1
1.% 59.8
TEige
0.7 13

their expressions in (6):
ka=wa/c=(w— ju)a/c=X—jY
koa=ka/\Je,= X" — jY’4
with
=X/\Je,, Y=Y/ /e, (6)

and we use a computer to find the values of X, X', Y, and Y’
satisfying (5a) and (5b).

C. Results of Computation

An example of the results that we can obtain is presented in
Table I for different modes and dimensions of dielectric samples
(of permittivity €, = 36).

A new material having been produced recently by NTK [8], for
which the product (f)/2g8) =350 000 and the permittivity ¢, =
9.7. Some results are given (Table II).

Some radiated Q also have been computed. For example, we
found

for TE,j; mode withe, =36 (Q,=314
withe, =97 Q,=8

for TE,;, mode withe, =36 Q, =273
withe, =97 Q,=09.

II. SHIELDED DIELECTRIC SPHERE

A. Fields Expressions

We now suppose that we have the system consisting of: a
dielectric sphere (permittivity €, and radius a), shielded by a
spherical metallic cavity of radius » (Fig 2). Such a structure
approximates the spherical dielectric resonator inserted into a
waveguide if the dimensions of the metallic sphere are near to the
inside dimensions of the waveguide.
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Fig. 2. Shielded dielectric sphere.

Applying Maxwell’s equations, we obtain the same wave equa-
tion of that used for free spheres. So, for » < a, we preserve the
same fields’ expressions. For a < r < b, we choose a solution that
is a linear combination of J, ., ,, and Y, ., ,, (the second kind of
Bessel function of the order n+% in k,r with ky=w/c) and
obtain

TE,,,, mode
fora<r<b
E =0
— Jopg
Ey=————m(BJ kor)+ CY, k
9 ‘/Fo—rsinﬂm( +1/2( o) +1/2( o’))
m sin
“P(cos8) "2 m

Jwpkg d
E, = \/___(BJ"+1/2(k0r)+CY;,H/z(ko"))"“

(P (cos0)) <2

s1n

n(n+1)
H =—— 7k, —55— (B, +1/2(k0’)+cxr+1/2(kor))

(P (cosB)) o 8 1

L 4
—r‘/Kdr

d
'(\/;(BJ,,+1/2(kor)+ CYn+1/2(k0r)))-d—0.

-(P™(cos8)) &2 sin ™
Hy=— 4
®  rsinby/k, dr
(\/—( h+1/2( Ko ’)+C ne12( Ko ")))
P(cosf) ~ sm me @)
TM,,m,mode
fora<r<b.

As we did previously, we permute the E and H fields without
forgetting \/u /€.
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Fig. 3. Resonant frequency variations of the shielded dielectric resonator

(SDR) for TE;y; mode.

B. Characteristic Equations

We satisfy the continuity conditions on the dielectric interfaces
at r=ga and the boundary conditions on the metallic surface
situated at r=1"5

1) Continuity at r = a of the tangential components of E and
H fields.

2) Tangential electric field must be zero at r = b.

After some manipulations, we obtain, respectively, for TE,,,,
and TM,,,,,, modes

n+1/2(k0b){ n+1/2(ka) +1/2(k0‘1)
—Verd,,1,,(koa)J, +1/2(k‘1)}
n+1/2(k0b){ Jos12(ka) ¥,y o (koa)
_mnu/z(koa)frfu/z(ka)}

€— €,
7 Ins12(ka){Jos1/2(koa) (3,112 (ko)

+2bko Y, (kb)) — Y, 11 2(koa)

(Jne12(kob) +2bkoJ; 11 12 (kob)) )

= {keO.I,,+1/2(k0a)J,,’+1/2(ka)

= koeJ, +1/2(ka) +1/2(k0”)}

'{Y;1+1/2(k0b)_ n+1/2(kob)

+2bko (Y112 (kob) = J}1 (o)) } (8)

J/i1, and Y/, ,, are the first derived functions (/kr or /kr)

[;

of Jy1pand Y,y .
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We solve these equations numerically using a HP9000 com-
puter. The variations of the frequencies as a function of the
radius b for n =1 and m = 0 bas been drawn in Figs. 3—7.

Let us consider the results for a = 0.72 mm. For TE,;,; mode,
we note that the frequency’s plateau (1 < b < 6) corresponds to
the resonant frequency of the free sphere, then the frequency
variation (b > 6) follows the variation of the metallic cavity’s
frequency of the corresponding mode, in which the dielectric
resonator is only a small perturbation of this metallic cavity.

This type of variation also can be observed for TM,; 5 mode
(1<b<25 & b>25). For modes that have large i variation
(for example TE,y,,TE;y, - - - ), we see several plateaus that cor-
respond to TE,q,, i.e.,

the first plateau to
(1<b<18)

resonant frequency of the free
sphere on the TE,;, mode

the second plateau to resonant frequency of the free

(25<b<.35) sphere on the TE,;; mode
the third plateau to  resonant frequency of the free
5<b< sphere on the TE,, mode.

Each plateau is followed by the frequency decrease like TE,,,,
TE,q;, TE,y;, respectively, modes of the empty cavities corre-
sponding. We can remark that the first plateau (before the
convergence to the variation of the TE;, of the empty cavity)
reduces as the order of the mode increases:

for TE,, there is the plateau for 1 <5< 6
for TE,, there is the plateau for 1< b <3
for TE,; there is the plateau for 1 <b <2
for TE,,, there is the plateau for 1 <5 <1.8.

Finally, a mode chart of the first TE,;, TM;q;, TEyq, TMyq;
modes of a shielded dielectric resonator is given.

C. Energy, Losses, and Quality Factor

Energy: The energy W stored in the dielectric shielded sphere
is defined as: ‘

W=y f[[EBdo=suf[Rdira  (9)

so W is the sum of the energy W,, stored inside the dielectric
sphere (for 7 < a) and the energy W,, stored between the dielec-
tric resonator and the metallic surface (4 < r < b).

Following the mode that we study, W, and W, can be ex-
pressed by using either E- or H-field components. For TE,,,
mode we use E, and for TM;;; mode we use H. In
the first case, for example, W, and W, satisfy (10) and (11),
respectively

. 1 Ig T LA . '
Wi=see [ [ [E-Exrtsingdrdods  (10)
—_— 1 Qo 7T bho = .

Wo=seo [ [E-Evrtsinddraods. (1)

We have calculated W, and W, for TE,; and TM,,; modes (i.c.,
n=1and m=0)
TE,y Mode

Jor12(%) =\/wajn(x)
Yr12(%) =\/277xyn(x)'

(12)
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Applying the relations (12) between the Bessel functions of
fractional order J,.,, and Y,,;, and the spherical Bessel
functions j,, y, we obtain (13), (14)

4 2
W= §A2€0‘r(27’f0) P'%)aS

-(jf(ka) - jo(ka)j2(ka))
W, =5 Aeoph (2’

(B} + CH, + B,C, 1)

(13)

(14)
with
O
b ilkob) mi(koa) = ji(kea) 1 (kob)’
C - J1(ka) ji(kob)
b iCkod) yi(koa) — ji(koa) yi (Kob)
1= (2 (ko) = Jo(kor) 1a(Kor))] o3
12=’3()’12(’(0’)_)’o(kor))é(ko’))]z
L= (2ji(kor) yi(kor) = jo( ko) y2 (Kor)
”jz(ko’)yo(kof))]z
T™;;, mode

(15)

wy =%A2ﬂo(2”f0)2€3€3a3
(J(ka) = jo(ka) j(ka))

Wy =442y (27f,) 3 ( B3, + C2L, + B,C, 1)

_ — e i(ka)(y1(kob) + bkoy{(kob)) :

(16)
1n

2 D
& ji(ka)(ji(kob) + bko ji(kob))
2= D
D = y,(koa)(ji(kob)+ bko ji( kob))
— ji(kga)( 3 (kob) + by yi(kyb))

(18)

Js and y; are the first derived functions of j, and y,.
_ Losses: The power losses P of the system are defined as:

P=P, + P, where P, are the metallic losses in 7 = b
- 1

P,=—-R H-H*),_,dS (19
2 S'/ '/;netalﬁc surface S( ) b ‘ )
and P, the dielectric losses
- 1 o o
P,=—¢ E-E*dv 20
4 2 d'/ f '/;) dielectric sphere volume ( )

with

Rs the surface resistivity =1/68
o metallic conductivity
&  skin depth =,/2/wp.0

so
Rs =y/27fyp, /20

o, is dielectric conductivity = (27f; )€€, 188 (1g8 loss tangent of
the material).
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As for the energy, we have calculated P for TE,y; and TMq : ;g"“ 10000 R+ Fre Breteosrt Mosonetr
modes [ i = istied -
: EXC : Empty Metalltc Cavity ,/’
TE101 mode t ,/ﬁ:n o o
1 /—
— 8 2'17f0p,0 30800+ \ FIEIRE of D //
=~ A% [ 20RO 42y \ .
P 3 4 20 boks 108 | '\‘
» ’ 2 \
“( B j{(kob) + C1y{(kob)) (21) S Y
— 1 I’Vl ' \ "
Py=>(27fy) €ce, 188 N
2 2€0¢, 58 - //\
= 277f0 tgsn/l (22) .9 ...lBBGB:-..>,‘ .......... Sonerefenssreenensoesd FTELO of FOR
TM; o, Mode —
_ 8 27rf0“0 2 [T} AP S tge! o TEIRL T
= 424 20 2 2 0 8- L L L L 4
P, = 3 A Yo b*(27fy) €§ ) 5 18 ; S ot
r= 36
. 2 tgd = z/ 48888
_ ( B, j1i(kob) + 31 (kob)) (23) Fig. 8. Quality factor variations of the SDR for TE,o; mode.
P, =2mfytgdWy. (24)
Quality Factor Q: lossesE-81 Telel mome (W2/W1IE-B2
— 28 18881 et 158880
) energy stored 5 w 25 [ - i !
= _— = - M woe —am
Q=2mf losses o P (25) sood. | I o7
. 15 F 1 '] /
1€, _ "’j‘ ! y/ 128888
1 [’
=2 — _ 12
e fo P, ,+P, ol seed //.’1
1 I_)m + ﬁd seat \ \\\ / :l
= (26) \ / segag
Q0 2fyW . /
This Q relation can be written as follows
1 P, P 1 1
SR, B R (27) :

+._
Qu
where Q, is called the metallic quality factor and Q, the

dielectric one. For the TE,j; and TM;; modes, this @ factor
satisfies

TE,; mode
1 - —
o - B, /(2nfy(W +W)))
1 - = —
o =88/ (W + W)
Q4
P, +2mfytgdW,
T™,,, mode
As previously mentioned, we have
P, +2af,1g8W; "
III. ResuLts

These Q factors have been computed and the variations as a
function of radius b have been drawn in Figs. 8-11.

For TE,,, and TM,;, respectively, the Q plateau (correspond-
ing to the frequencies’ plateau) corresponds to the inverse of the
loss tangent of the dielectric material. This plateau for TE,y
(1 < b < 6) corresponds to the value Hy =0 (Fig 9). Then the
increase of Q@ values (corresponding to the decrease of the
frequencies) converges to the Q variation of the metallic cavity.
This Q variation is of the same type for the TM;,; mode.

Lt Enargy of R for rea

L etk a = 8.22mm

€= 36

Fig. 9. Energy, losses, and magnetic-field component H, for TE;,; mode.
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€= 36
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Fig. 10. Quality factor variations of the SDR for TE,y, mode.

For modes having large i variation, we note several Q plateaus.
For TE,, for example:

The first Q plateau (1 < b < 3) corresponds to the inverse of
the loss tangent of the dielectric material on TE;;, mode (ie.,
like for frequencies).

The variation following (i.e., increase and decrease) corre-
sponds to the variation of the Q of the metallic cavity on
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Fig. 11. Quality factor variations of the SDR. for TM,y; mode.

the TE,,; mode (effectively, here, the resonant frequency of the
shielded dielectric resonator on the TE,;, mode follows the
variation of the resonant frequency of metallic cavity on the
TE,,; mode).

The second Q plateau (7 < b <10) corresponds to the inverse
of the loss tangent of the dielectric material on the TE;; mode.

The last increase converges to the Q values of the metallic
cavity on the TE,;, mode (the frequency follows here, the one of
metallic cavity on TE,,; mode).
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crostrip transmission lines. Conductor strips are assumed to be embedded
in a multilayered isotropic and/or anisotropic medium, This method pro-
vides accurate expressions for computing upper and lower bounds for the
true values of mode capacitances. The effects of side wall-shielding and
anisotropy of the material are investigated. Some particular multilayered
structures are analyzed, which could be applied to the design of directional
couplers and filters.

I. INTRODUCTION

As is well known, coupled lines are extensively used as building
blocks for a great variety of microwave circuit components for
communication systems [1]-[3]. The electrical response of cou-
pled line systems has been studied using the ABCD or impedance
matrix formulation [4], [5], and these techniques require prior
knowledge of the mode characteristic impedances and phase
velocities of the structure to be used. When weak coupling must
be achieved, edge-coupled strips on a dielectric substrate are
widely used. This configuration yields small deviations from
equal mode-phase velocities, but these can be suppressed by
using adequate techniques [6], [7]. However, if a strong coupling
is needed, broadside-coupled configurations are more adequate.
If the strips are embedded in an inhomogeneous and /or aniso-
tropic dielectric medium, deviations from equality of phase veloc-
ities appear. In fact, large phase velocity ratios can be achieved
with broadside-coupled structures, which is useful for the design
of single section components with complex electrical responses
[8]. Nevertheless, if equal mode-phase velocities are required,
matching can be achieved if we use multidielectric iso/aniso-
tropic configurations.

Broadside-coupled and broadside edge-coupled structures have
been studied by several authors using different methods [8]-[15].
The purpose of this paper is to present a unified formulation to
analyze these configurations, in a multilayered iso/anisotropic
medium. The multiple boundaries problem is treated by using a
variational method in the spectral domain. The application of
this method provides two numerically efficient algorithms that
yield upper and lower bounds for the exact values of the mode
capacitances for this type of transmission lines. We have applied
the method to several particular cases, and also reported the
influence of the side walls and anisotropy.

II. ANALYSIS

The cross sections of the structures that are the object of this
study are represented in Fig. 1. For both configurations we will
assume perfect conductors and lossless dielectric layers. We will
also assume strips with valueless thickness. The electrical permit-
tivity of the i-th dielectric layer is given by the following diagonal
tensor:

¢y

Although the inhomogeneous nature of the dielectric medium
precludes pure TEM-mode propagation, one can use the quasi-
TEM approximation as long as the cross-sectional dimensions are
much smaller than the wavelength. In this case, structures in Fig
1(a) and (b) can support two and four orthogonal modes of
propagation, respectively. By determining each mode capaci-
tance, we can in turn discover the electrical behavior of the
coupled transmission line. To evaluate the mode capacitances,
one can simplify the problem by taking into account the symme-
try of the structure. In fact, we only need analyze one quadrant of
the cross section shown in Fig. 1(a) or (b) (the upper right
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